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Introduction

Much effort has been devoted to model car traffic: How to describe traffic characteristics based
on individual drivers’ behavior (e.g., car-following and lane-changing)

Little exchange of ideas filtered to/from the similar problem for track-based transportation

We want to develop novel railway traffic flow models based on driver behavior modeling by:
= extending key ideas from car traffic
= considering the specific/different aspects of railway (e.g., the strict safety system)

Our main goals are:

1. Formalize the relation between train driver characteristics, including his/her behavior,
vehicle’s technology, signaling system, and the aggregate performance of the system

2. Quantify the system benefit resulting from automatic train operation (ATO) in terms of
added reqgularity and reliability, compared to a human driver

Alessio Trivella | 23.05.2022 | 2



Problem description
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Analysis on recorded data from the Swiss network (50 trains)
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Stochastic process models (1/2): BM and OU

We define 4 stochastic processes of increasing complexity that model different situations

1. Speed follows a Brownian motion (BM)

do(t) = odW(t) — v(tz) = v(tr) ~ N(0,0%(t2 — 1))

[BM]: { ds(t) _ ’U(t)dt > S(t) = fot”U(T)dT

It can represent a malfunctioning speed control where speed cannot be controlled, or very
strong influences from unpredictable effects such as wind gusts, or line resistances

2. Speed follows an Ornstein-Uhlenbeck process (OU)

oul: 4 ) = Beruse —v(t))dt + odW(H) » Mean-reverts to Vcruiss
) ds(t) = v(t)dt

It can represent the process of a human train driver who knows the planned
speed and continuously controls the train speed to be as close as possible
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Stochastic process models (2/2): CIR and DMR

3. Cox-Ingersoll-Ross process (CIR)
~ —~ v - (UMAX - U)
. v(t) = B(veruse — v(t))dt + 7 (v(t)) dW (1) o(v) = U\/
[CIR]' { ( ) _ ’U(t)dt | (T ) UcRrUISE * (’UMAX - ’UCRUISE)

Similar to OU but speed is bounded through a speed-dependent volatility

4. Doubly mean-reverting, doubly bounded process (DMR)

[DMR]: { (? [B(veruise — v(t)) + & (voruise t — s(¢))] dt + o (v(t)) AW (2)
ds(t) = v(t)dt

It can model how a computer, aware of precise position of current and ahead vehicle, can

steer the system towards a desired space headway
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Full driving dynamics and deterministic benchmark

= When a yellow signal is triggered, the train decelerates towards an approach speed
= Full driving dynamics combine a stochastic process with possible deceleration phases

We also study a deterministic benchmark

= The follower has a constant speed Vrorrowsr

= If yellow signal, constant deceleration to the approach speed

= If approach speed reached, constant acceleration until VrorLower

Three cases:

= If vrorowsr < Ucruise , the follower will indefinitely get further away from the leader, no trigger
* If YroLLower = Ucruise , leader and follower keep constant distance

= If YroLLower > Vcruise , the follower runs faster, reach the minimum safety distance, trigger a
yellow signal, decelerate, accelerate again, trigger again, indefinitely oscillating over this cycle
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Analytical approaches

We can study these processes with two approaches:
1. by adapting theoretical results on stochastic processes (fancy but very sophisticated)
2. by Monte Carlo simulation of multiple stochastic process trajectories (quite straightforward)

Why theory is complex?

1. Itinvolves stochastic differential equations (due to stochastic processes)

2. It involves difficult stochastic differential equations (due to integrated stochastic processes)
3. Itinvolves exogenous dynamics, e.g., the deceleration phase due to trigger

What can we study?
1. Simple processes/integrated processes (BM, OU)
2. Performance indicators independent of external dynamics, e.g., first time to yellow
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First hitting time density (FHTD)

= Standard BM is the only case where a closed-form expression exists

1 — vo| (?7—”00)2 , : T
— — > lled inver lan distribution
p(t|vo,n) — exp 57 Called inverse Gaussian distributio

= Standard OU: complex (only easy case is with threshold equal to mean-reversion)

= Integrated BM and OU: very complex. The FHTD satisfies

g (o mu(t0,0)) _ [ Cppp [ 1t X2(9)], 9) h
1 Ef( 20,0} )fo p(9]0,0)Ez ) |1 Ef( 20, 017 )]dﬁ where

Erf(z) = % fo Ce P AX() = [AX(H) + MA(t) + GAW (1),

t t
m(t‘y,tg) — eA(t—to) [y_|_/ e_A(u—to)Mdu:| . Q(t‘to) — / eA(t—u)GGTeA(t—u)du
to

to
Which is approximated by solving a system of linear equations
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FHTD: Analytical vs. simulation
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Analytical vs. simulation: takeway

= \We were able to determine the FHTD of some processes analytically:
= The analytical results match with our simulation

* This suggests that our simulation tool is accurate (despite known issues of simulation)

= In general, we have to rely on simulation:

= For more complex stochastic processes (CIR, DMR and their integrals)
= For performance indicators that require the full dynamics

=  \We show next results from simulation, where:
U(O) = VUCRUISE — 35 m/S Unax — 40 m/S dMIN — Skm /8 — 002

VUAPPROACH — 20 m/S dO = 3.2 km o = 02 o = 00005
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Time-speed trajectories
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-space trajectories
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Space-speed trajectories
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Performance indicators

Table 1: Analysis of aggregate properties from the four stochastic process models (horizon 1 hour).

Performance indicator Unit BM ou CIR DMR DET, DET.
Trajectories with at least one yellow signal  [%] 70.4 65.2 65.9 0.0 0.0 100.0
Yellow signals per 1000 seconds -] 0.20 0.19 0.19 0.00 0.00 2.50

- average S 1474 1962 1941 3600 >3600 105
Time to first yellow  50th percentile 5] 536 1627 1563  >3600  >3600 105
5th percentile 8] 104 214 230 >3600  >3600 105

- average n] 2025 366 366 320 320 333
Space headway 50th percentile [km] 15.14 3.62 3.62 3.20 3.20 3.33
95th percentile [km] 55.24 4.41 4.43 3.28 3.20 3.64

- average m/s] 2424 3481 3481 3500 3500 3488
Speed follower 50th percentile m/s]  24.19  34.94  35.00 35.03 35.00 37.00
95th percentile m/s|]  37.08  36.60  36.51 36.59 35.00 37.00

System throughput (vehicles/hour) 2 15.8 34.2
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Sensitivity analysis
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Conclusion

= \We developed a novel railway traffic flow model

= \We proposed four stochastic processes that can model different driving situations (e.g.,
human driver and ATO)

=  We quantified the benefit of ATO in terms of added regularity and reliability

= However, current trains do not know about the distance of the traffic flow ahead, nor their
speed; The only immediate information they have is whether there is yellow signal, or not

Future work includes

= Generalization and identification of analytic similarities with bus bunching
= |dentification/calibration of suitable parameters for the real-life processes
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