

# Stochastic process models of railway traffic flow: Models, methods, and implications

**Alessio Trivella** 

Joint work with: Francesco Corman and Mehdi Keyvan-Ekbatani

# Introduction

Much effort has been devoted to model **car traffic**: How to describe traffic characteristics based on individual drivers' behavior (e.g., car-following and lane-changing)

Little exchange of ideas filtered to/from the similar problem for track-based transportation

We want to develop novel railway traffic flow models based on driver behavior modeling by:

- extending key ideas from car traffic
- considering the specific/different aspects of railway (e.g., the strict safety system)

Our main goals are:

- 1. Formalize the relation between train driver characteristics, including his/her behavior, vehicle's technology, signaling system, and the **aggregate performance** of the system
- 2. Quantify the system benefit resulting from **automatic train operation (ATO)** in terms of added regularity and reliability, compared to a **human driver**

# **Problem description**



## Analysis on recorded data from the Swiss network (50 trains)



# Stochastic process models (1/2): BM and OU

We define 4 stochastic processes of increasing complexity that model different situations

1. Speed follows a Brownian motion (BM)

$$[\mathbf{BM}]: \begin{cases} dv(t) = \sigma dW(t) \longrightarrow v(t_2) - v(t_1) \sim N(0, \sigma^2(t_2 - t_1)) \\ ds(t) = v(t) dt \longrightarrow s(t) = \int_0^t v(\tau) d\tau \end{cases}$$

It can represent a **malfunctioning speed control** where speed cannot be controlled, or very strong influences from unpredictable effects such as wind gusts, or line resistances

2. Speed follows an Ornstein-Uhlenbeck process (OU)

$$[\mathbf{OU}]: \begin{cases} dv(t) = \beta(v_{\text{CRUISE}} - v(t))dt + \sigma dW(t) & \longrightarrow \text{ Mean-reverts to } v_{\text{CRUISE}} \\ ds(t) = v(t)dt \end{cases}$$

It can represent the process of a **human train driver** who knows the planned speed and continuously controls the train speed to be as close as possible

# Stochastic process models (2/2): CIR and DMR

3. Cox-Ingersoll-Ross process (CIR)

$$[\mathbf{CIR}]: \begin{cases} dv(t) = \beta(v_{\text{CRUISE}} - v(t))dt + \widehat{\sigma}(v(t)) dW(t) & \widehat{\sigma}(v) := \sigma \sqrt{\frac{v \cdot (v_{\text{MAX}} - v)}{v_{\text{CRUISE}} \cdot (v_{\text{MAX}} - v_{\text{CRUISE}})}} \end{cases}$$

Similar to OU but speed is bounded through a speed-dependent volatility

4. Doubly mean-reverting, doubly bounded process (DMR)

$$[\mathbf{DMR}]: \quad \begin{cases} \mathrm{d}v(t) = \left[\beta(v_{\mathrm{CRUISE}} - v(t)) + \alpha\left(v_{\mathrm{CRUISE}} t - s(t)\right)\right] \mathrm{d}t + \widehat{\sigma}(v(t)) \,\mathrm{d}W(t) \\ \mathrm{d}s(t) = v(t) \mathrm{d}t \end{cases}$$

It can model how a **computer**, aware of precise position of current and ahead vehicle, can steer the system towards a desired space headway

# Full driving dynamics and deterministic benchmark

- When a yellow signal is triggered, the train decelerates towards an approach speed
- Full driving dynamics combine a stochastic process with possible deceleration phases

#### We also study a **deterministic benchmark**

- The follower has a constant speed  $v_{\text{FOLLOWER}}$
- If yellow signal, constant deceleration to the approach speed
- If approach speed reached, constant acceleration until  $v_{\text{FOLLOWER}}$

#### Three cases:

- If  $v_{\text{FOLLOWER}} < v_{\text{CRUISE}}$ , the follower will indefinitely get further away from the leader, no trigger
- If  $v_{\text{FOLLOWER}} = v_{\text{CRUISE}}$ , leader and follower keep constant distance
- If  $v_{\text{FOLLOWER}} > v_{\text{CRUISE}}$ , the follower runs faster, reach the minimum safety distance, trigger a yellow signal, decelerate, accelerate again, trigger again, indefinitely oscillating over this cycle

# **Analytical approaches**

We can study these processes with two approaches:

- 1. by adapting **theoretical results** on stochastic processes (fancy but very sophisticated)
- 2. by Monte Carlo simulation of multiple stochastic process trajectories (quite straightforward)

Why theory is complex?

- 1. It involves stochastic differential equations (due to stochastic processes)
- 2. It involves difficult stochastic differential equations (due to integrated stochastic processes)
- 3. It involves exogenous dynamics, e.g., the deceleration phase due to trigger

What can we study?

- 1. Simple processes/integrated processes (BM, OU)
- 2. Performance indicators independent of external dynamics, e.g., first time to yellow

# First hitting time density (FHTD)

Standard BM is the only case where a closed-form expression exists

$$p(t|v_0,\eta) = \frac{|\eta - v_0|}{\sqrt{2\sigma\pi t^3}} \exp\left(-\frac{(\eta - v_0)^2}{2\sigma^2 t}\right) \longrightarrow \text{ Called inverse Gaussian distribution}$$

- Standard OU: complex (only easy case is with threshold equal to mean-reversion)
- Integrated BM and OU: very complex. The FHTD satisfies

$$\begin{split} &1 - \mathrm{Erf}\left(\frac{\eta - \mathbf{m}_{1}(t|\mathbf{0}, 0)}{\sqrt{2Q_{11}(t|0)}}\right) = \int_{0}^{t} p(\vartheta|\mathbf{0}, 0) \mathbb{E}_{Z(\vartheta)} \left[1 - \mathrm{Erf}\left(\frac{\eta - \mathbf{m}_{1}(t|[\eta, X_{2}(\vartheta)], \vartheta)}{\sqrt{2Q_{11}(t|\vartheta)}}\right)\right] \mathrm{d}\vartheta \quad \text{where} \\ &\mathrm{Erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt, \quad \mathrm{d}\mathbf{X}(t) = [A\mathbf{X}(t) + \mathbf{M}] \mathrm{d}(t) + G \mathrm{d}\mathbf{W}(t), \\ &\mathbf{m}(t|\mathbf{y}, t_{0}) = e^{A(t-t_{0})} \left[\mathbf{y} + \int_{t_{0}}^{t} e^{-A(u-t_{0})} \mathbf{M} \mathrm{d}u\right], \quad Q(t|t_{0}) = \int_{t_{0}}^{t} e^{A(t-u)} G G^{\mathsf{T}} e^{A(t-u)} du \end{split}$$

Which is approximated by solving a system of linear equations

## FHTD: Analytical vs. simulation













15

time (seconds)

20

pdf FPT speed (OU) with  $(v_0, v_{max}) = (35, 37)$  m/s

Empirical

Analytical

25

0.12

0.1

0.08

0.06

0.04

0.02

0

-5

10

#### OU CDF FPT speed (OU) with $(v_0, v_{max}) = (35, 37)$ m/s 0.8 0.70.6 0.5 Empirical 0.4 Analytical 0.3 0.20.1 30 200 5 10 15 2530 time (seconds)



## Analytical vs. simulation: takeway

- We were able to determine the FHTD of some processes **analytically**:
  - The analytical results match with our simulation
  - This suggests that our **simulation tool is accurate** (despite known issues of simulation)
- In general, we have to rely on simulation:
  - For more complex stochastic processes (CIR, DMR and their integrals)
  - For performance indicators that require the full dynamics
- We show next results from simulation, where:

$$v(0) = v_{\text{CRUISE}} = 35 \,\text{m/s}$$
  $v_{\text{MAX}} = 40 \,\text{m/s}$   $d_{\text{MIN}} = 3 \,\text{km}$   $\beta = 0.02$   
 $v_{\text{APPROACH}} = 20 \,\text{m/s}$   $d_0 = 3.2 \,\text{km}$   $\sigma = 0.2$   $\alpha = 0.0005$ 

## **Time-speed trajectories**



### **Time-space trajectories**



## **Space-speed trajectories**



## **Performance indicators**

Table 1: Analysis of aggregate properties from the four stochastic process models (horizon 1 hour).

| Performance indicator                        |                 | Unit           | BM    | OU    | CIR   | DMR   | DET <sub>0</sub> | $\mathrm{DET}_+$ |
|----------------------------------------------|-----------------|----------------|-------|-------|-------|-------|------------------|------------------|
| Trajectories with at least one yellow signal |                 | [%]            | 70.4  | 65.2  | 65.9  | 0.0   | 0.0              | 100.0            |
| Yellow signals per 1000 seconds              |                 | [-]            | 0.20  | 0.19  | 0.19  | 0.00  | 0.00             | 2.50             |
| Time to first yellow                         | average         | [s]            | 1474  | 1962  | 1941  | >3600 | >3600            | 105              |
|                                              | 50th percentile | $[\mathbf{S}]$ | 536   | 1627  | 1563  | >3600 | >3600            | 105              |
|                                              | 5th percentile  | $[\mathbf{s}]$ | 104   | 214   | 230   | >3600 | >3600            | 105              |
| Space headway                                | average         | [km]           | 20.25 | 3.66  | 3.66  | 3.20  | 3.20             | 3.33             |
|                                              | 50th percentile | [km]           | 15.14 | 3.62  | 3.62  | 3.20  | 3.20             | 3.33             |
|                                              | 95th percentile | [km]           | 55.24 | 4.41  | 4.43  | 3.28  | 3.20             | 3.64             |
| Speed follower                               | average         | [m/s]          | 24.24 | 34.81 | 34.81 | 35.00 | 35.00            | 34.88            |
|                                              | 50th percentile | [m/s]          | 24.19 | 34.94 | 35.00 | 35.03 | 35.00            | 37.00            |
|                                              | 95th percentile | [m/s]          | 37.08 | 36.60 | 36.51 | 36.59 | 35.00            | 37.00            |
| System throughput (vehicles/hour) —          |                 |                | 15.8  | 34.2  | 34.2  | 39.8  | 42.0             | A1               |

# Sensitivity analysis

Initial headway





Process volatility





-0-0-0

**-D-** BM

--OU

• 🛧 CIR

- DMR

3500

-0

3400

-0- 8 -0- 8 -0- B

3300

# Conclusion

- We developed a novel railway traffic flow model
- We proposed four stochastic processes that can model different driving situations (e.g., human driver and ATO)
- We quantified the benefit of ATO in terms of added regularity and reliability
- However, current trains do not know about the distance of the traffic flow ahead, nor their speed; The only immediate information they have is whether there is yellow signal, or not

Future work includes

- Generalization and identification of analytic similarities with bus bunching
- Identification/calibration of suitable parameters for the real-life processes



# Stochastic process models of railway traffic flow: Models, methods, and implications

**Alessio Trivella** 

Joint work with: Francesco Corman and Mehdi Keyvan-Ekbatani