

Sustainable and efficient logistics: How optimization transformed Italmondo's cargo loading operations

EHzürich

The Team

Mikele Gajda

PhD student HEC Lausanne

Alessio Trivella

Postdoc ETH Zurich

. . .

Renata Mansini

Professor

University of Brescia

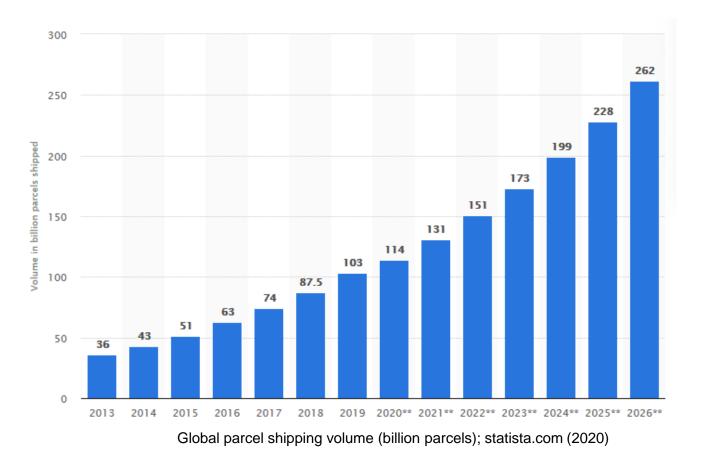
David Pisinger

Professor

Technical University of Denmark

Paolo Giannotti

Associate Managing Director ITLM Group Sitalmondo


Maria Antonietta Spera Federico Pozzi Chiesa Andrea Cerra

Background

The logistics sector is growing

 The number of parcels shipped globally is expected to **double** from 2020 (>100 billion) to 2025 (>200 billion)


• Covid-19 has exacerbated this trend

Opportunities & Challenges

This growth is an **opportunity** for logistics operators...
 ...but also a **challenge**, due to increasing:

Operational	Environmental	5.3 Parcel
costs	concerns	Freight

Base scenario for urban freight 2030; World Economic Forum (2020)

 Turning this opportunity into higher profits/sustainability requires efficient operations (loading vehicles, managing inventories, routing strategies, etc.)

EHzürich

Italmondo (ITLM Group)

• HQ in Italy, branches in Europe and Asia

- Operations cover different modes
- Road transport one of the main businesses with hundreds of trucks loaded on a daily basis
 - Before: done manually
 - Goal: use optimization to improve it

International transport by road Freight transport services in Europe, North Africa and Asia with an associated management of customs procedures.

Integrated logistics E-logistics solutions for every business need, from purchase to physical distribution until warehouse management.

Digital consulting A mix of highly qualified skills able to guarantee cutting-edge digital services for successful startups and e-commerce.

Sea transport Customized services for shipping containers by sea to and from the major ports in the world.

National transport

modes.

2MH

Road freight transport service throughout the

country with groupage, full truck and part-load

Transport, delivery, installation and replacement

of furniture and appliances of all sizes

Air transport Highly personalized air freight service safe and quality based on worldwide scale.

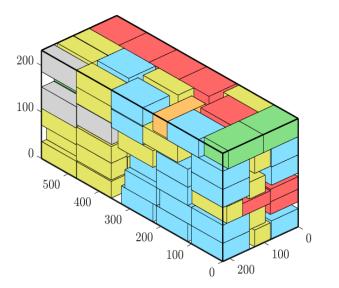
E-commerce

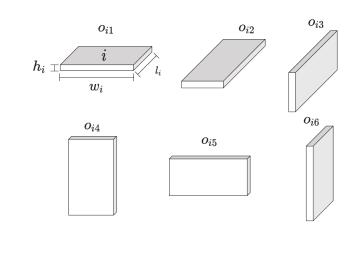
Integrated logistics services and customized software solutions for the digitalisation of small and large business processes.

Parcel

Fast and secure online shipments able to deliver parcels in Italy and abroad with the best partner carriers.

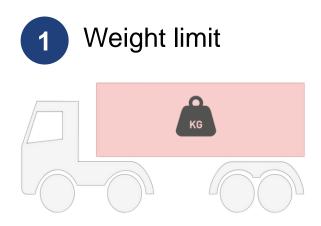
Loading Operations

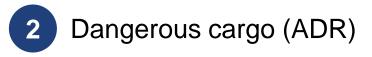


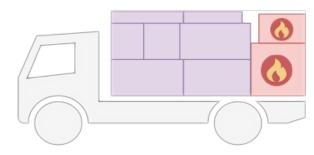

EHzürich

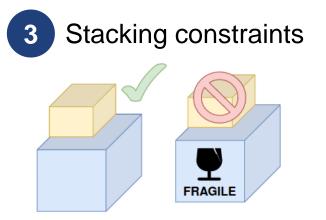
Container Loading Problem (CLP)

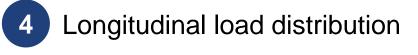
- 3D packing problem with a single container
- Maximize value under "physical" constraints: Non-overlapping, boundaries, orthogonal packing
- Can be formulated as a mixed-integer program (MIP)

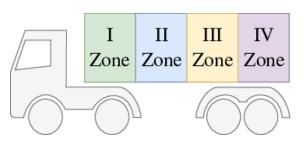

 $\max \sum_{i \in \mathcal{B}} \pi_i t_i$ s.t.: $f_{ij} + f_{ji} + b_{ij} + b_{ji} + u_{ij} + u_{ji} + (1 - t_i) + (1 - t_j) \ge 1$ $\forall i, j \in \mathcal{B}, \ i < j,$ $x_i + w_i(o_{i2} + o_{i4}) + l_i(o_{i1} + o_{i6}) + h_i(o_{i3} + o_{i5}) - x_j \leq L(1 - b_{ij})$ $\forall i, j \in \mathcal{B},$ $y_i + w_i(o_{i1} + o_{i3}) + l_i(o_{i2} + o_{i5}) + h_i(o_{i4} + o_{i6}) - y_j \leq W(1 - f_{ij})$ $\forall i, j \in \mathcal{B},$ $z_i + w_i(o_{i5} + o_{i6}) + l_i(o_{i3} + o_{i4}) + h_i(o_{i1} + o_{i2}) - z_i \leq H(1 - u_{ii})$ $\forall i, j \in \mathcal{B},$ $x_i + w_i(o_{i2} + o_{i4}) + l_i(o_{i1} + o_{i6}) + h_i(o_{i3} + o_{i5}) \leq L$ $\forall i \in \mathcal{B}.$ $y_i + w_i(o_{i1} + o_{i3}) + l_i(o_{i2} + o_{i5}) + h_i(o_{i4} + o_{i6}) \leq W$ $\forall i \in \mathcal{B}.$ $z_i + w_i(o_{i5} + o_{i6}) + l_i(o_{i3} + o_{i4}) + h_i(o_{i1} + o_{i2}) \leq H$ $\forall i \in \mathcal{B},$ $\forall i \in \mathcal{B}.$ $o_{i1} + o_{i2} + o_{i3} + o_{i4} + o_{i5} + o_{i6} = 1$ var. : $f_{ij}, b_{ij}, u_{ij}, t_i, o_{i1}, o_{i2}, o_{i3}, o_{i4}, o_{i5}, o_{i6} \in \{0, 1\}$ $\forall i, j \in \mathcal{B},$ $\forall i \in \mathcal{B}.$ $x_i, y_i, z_i \ge 0$

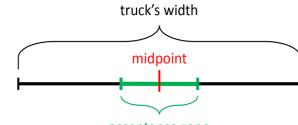


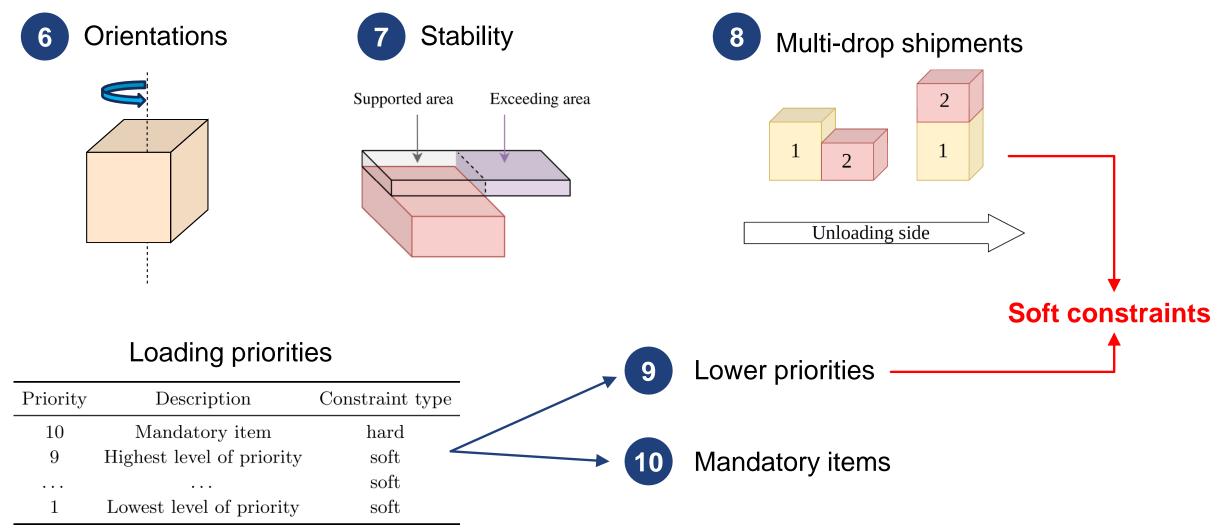



Practical Constraints

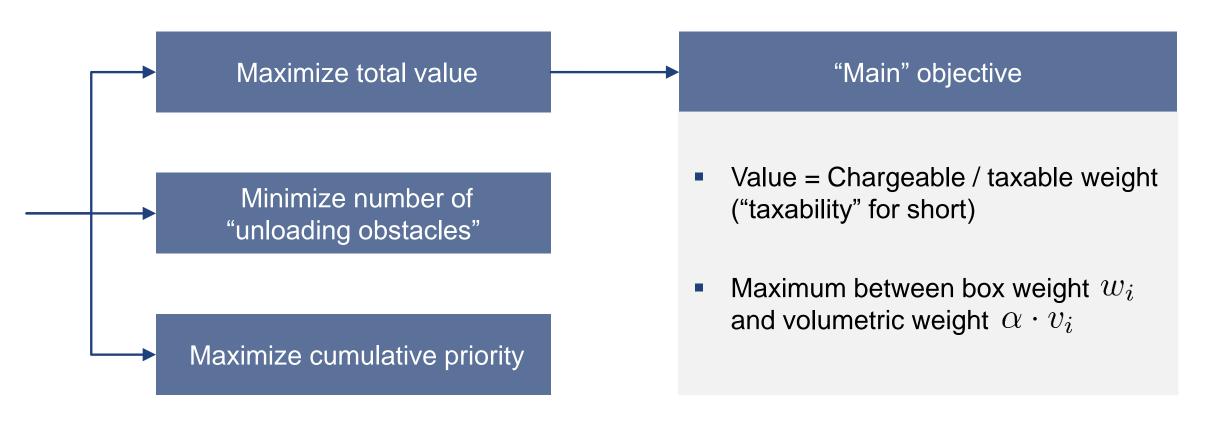

All constraints are defined jointly with Italmondo







Horizontal load balancing



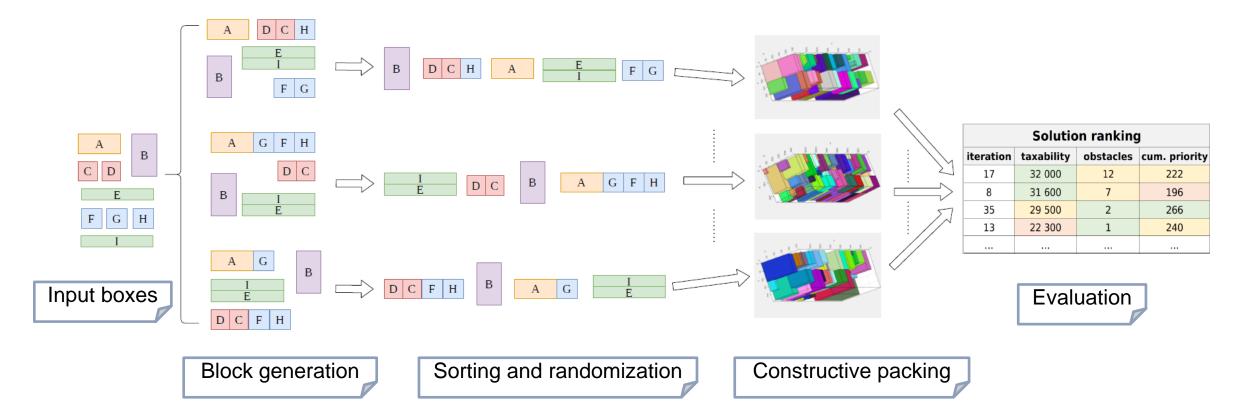
Practical Constraints

Loading Objectives

The problem is inherently multi-objective

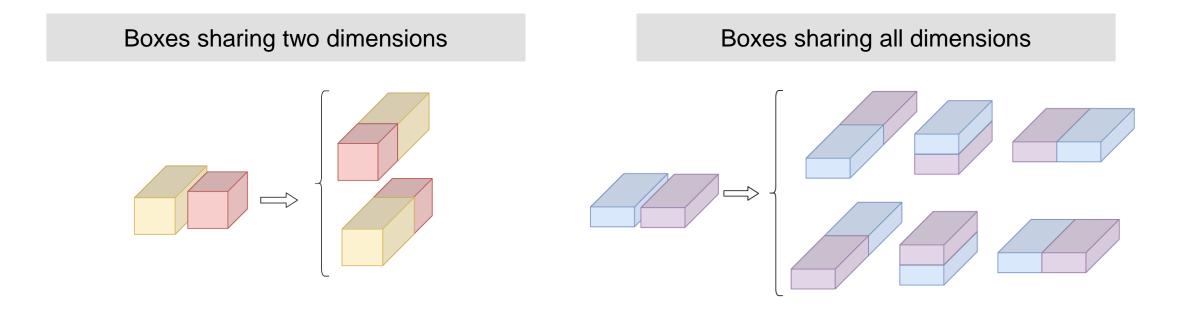
Computational Requirements

- 1. Handle large-scale instances with up to 500 items
- 2. Handle strongly heterogeneous instances in both size and weight
- 3. Provide feasible and optimized solutions within **5-10 seconds**


Accounting for all practical constraints under such strict requirements is challenging!

State of Research

- The CLP is well studied (Bischoff and Ratcliff 1995, Pisinger 2002, Bortfeldt and Wascher 2013, Zhao et al. 2016, Araya et al. 2017, Silva et al. 2019)
- Both exact and heuristic methods for the CLP (Zhao et al. 2016, Silva et al. 2019).
 Exact methods far from meeting industry standards: Not fast enough, not flexible enough (Junqueira et al. 2012, Alonso et al. 2019, Kurpel et al. 2020, Nascimento et al. 2021)
- Practical constraints have also been studied
 - Individually (Baldi et al. 2012, Ramos et al. 2018, Trivella and Pisinger 2016, Oliveira et al. 2020)
 - Or in small subsets (Junqueira et al. 2012, Alonso et al. 2019, Kurpel et al. 2020)
 - Da Silva et al. (2020) deal with weakly heterogeneous instances
 - Nascimento et al. (2021) consider many constraints but model and test one at a time
- Unloading constraints are always modeled as hard constraints (Pollaris et al. 2015)
- Multi-objective analysis of loading objectives not considered in the literature


Overview of Approach

We developed a multi-run constructive approach based on multiple phases

Block Generation

Larger blocks are created from boxes sharing certain features

• The procedure is repeated iteratively

EHzürich

Block Generation

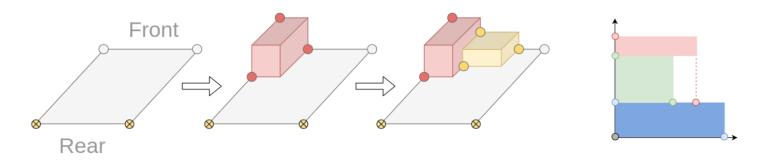
- Second iteration:
 Stability?
 Stability?
- Blocks help to better utilize the volume (as done in the literature)
- Using blocks with practical constraints is non trivial
- Individual items within the blocks have to be tracked

Sorting and Randomization

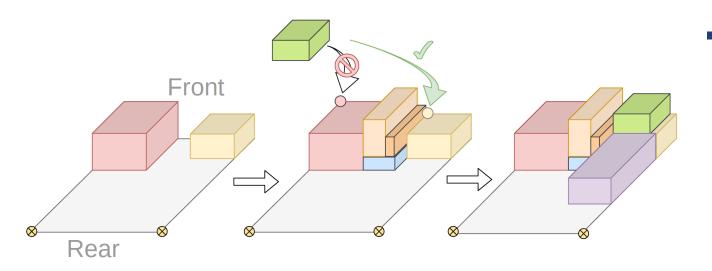
Item sorting

Idea: The outcome from loading items sequentially depends on their sorting

List perturbation


Idea: Perturbing the list allows diversifying the loading and explore a larger space of solutions

- taxability
- priority level (then by taxability)
- customer number (then by taxability)


- Randomize orientations
 - Of each individual item
 - Of all items sharing all dimensions
- Perturb order by similarity
 - By volume
 - By weight
- In contrast to GRASP, randomization is decoupled from construction, hence faster: $O(|\mathcal{B}|^2)$

Constructive Packing

- Load items sequentially in candidate locations - Potential Points (PPs)
- Update PPs list after each insertion

 Choose PP to insert the item such that insertion is feasible w.r.t. load distribution (zones), stackability, stability, ADR cargo, blocks

Ensuring a larger proportion of the contact surface with the underlying items

(In tie-breaking cases, minimize the x-coordinate, i.e., load from the front of the truck)

Dual Bounds on Taxability

Continuous upper bound

- 1. Load all mandatory items
- 2. Load all others sorted by taxability/volume, until their joint volume fits
- 3. Load all others sorted by taxability/weight, until their joint weight fits
- 4. Take the minimum taxability achieved

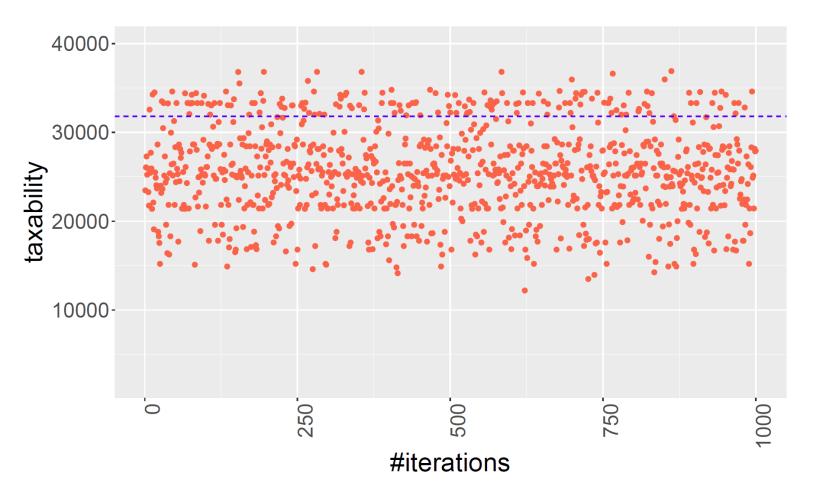
3D Knapsack Packing

- Solve the MIP, adding weight limit, forcing mandatory items and allowed orientations
- Take the best upper bound available on the branch-and-cut tree

Numerical Results

• 38 representative **real instances and solutions** provided by Italmondo, up to 450 items

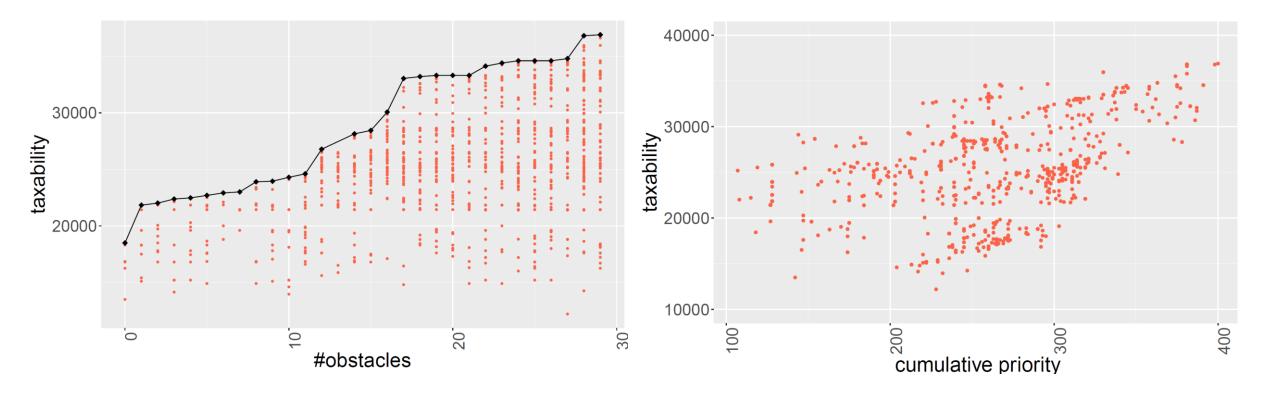
	Bound	С	ompany		Heuristi	ic
Average	tax	tax	gap (%)	tax	gap(%)	time (s)
All instances Exclude infeasible	$\begin{array}{c} 31.3\\ 26.2 \end{array}$	24.8	$\frac{16.7}{21.5}$	$\begin{array}{c} 26.7 \\ 21.8 \end{array}$		$\begin{array}{c} 4.8 \\ 4.1 \end{array}$


- 9 of the company's solutions are provably **infeasible** (e.g., violate weight limit)
- The average taxability improvement is **22.4%**, with **12.4%** lower optimality gap
- The average runtime for 500 iterations is less than **5 seconds**

Significantly superior solutions in terms of value and constraint handling

E *H* zürich

Usefulness of Randomization

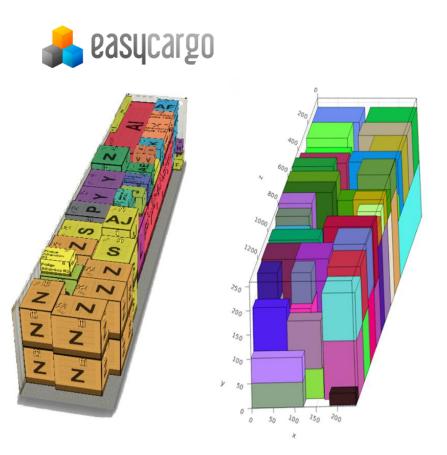


 The initial sorting by taxability lead to a good solution on average (dashed blue line)

 Taxability in the best iteration is 16% higher

ETH zürich

Multi-objective Analysis of Soft Constraints


- Obstacles and taxability are in conflict: Limiting obstacles requires sacrificing taxability
- Cumulative priority and taxability are **less conflicting**: Managing priority less critical

Comparison with Existing Tools

Commercial tools for the CLP exist, including the well-known EasyCargo, but

Less flexibility: Only a few practical constraints can be enforced

Less value is achieved, especially for strongly heterogeneous instances (up to 13% less)

ETH zürich

The Optimization Software

• A tool has been developed and is being used

Logo	DOMAIN	USER LIST	MAILTEXT	TYPE OF TRUCK	
			Side Unloading		
Name	Random		Zone Weight Check		
MEASURE Longth (cm)	1300		Max Zone One Weight	Combined zone weight must be equal to the total max weight	
Width (cm)	250		Max Zone Two Weight	Combined zone weight must be equal to the total max weight	
Height (cm)	240		Max Zone Three Weight	Combined zone weight must be equal to the total max weight	
Max Weight (kg)	23000		Max Zone Four Weight	Combined zone weight must be equal to the total max weight	
Volume (m3)	81.6				DD SAVE

Type of truck	Length (cm)	Width (cm)	Height (cm)	Max Weight (kg)	Volume (m3)	Side Unloading	Weight Zone 1	Weight Zone 2	Weight Zone 3	Weight Zone 4	Action
Teehee2	240	240	240	24000	13.824	Yes					MODIFY
Autotrono2	1360	244	260	24000	86.2784	No	5000	5000	9000	5000	MODIFY
Autoevolution2	1400	425	345	25000	205.275	Yes	6000	5000	9000	5000	B MODIFY
Autotreno3	1360	244	260	24000	86.2784	Yes					MODIFY
Autotreno4	1360	244	260	25000	86.2784	Yes	5000	5000	9000	6000	B MODIFY
Autotreno5	1360	244	260	24000	86.2784	Yos	5000	5000	9000	5000	MODIFY
Autotreno	1360	244	260	24000	86.2784	Yes	5000	5000	9000	5000	MODIFY

Alessio Trivella | 23.05.2022 | 24

ETH zürich

The Optimization Software

Logo

TRUCK LOADING SOFTWARE

rocont

11 55

Type of Truck

🚯 VIEW 3D

Autoteno

 Max Container Weight
 24000 kg

 Occupied Weight
 3060 kg

 Total Container Volume
 86-2784 cm3

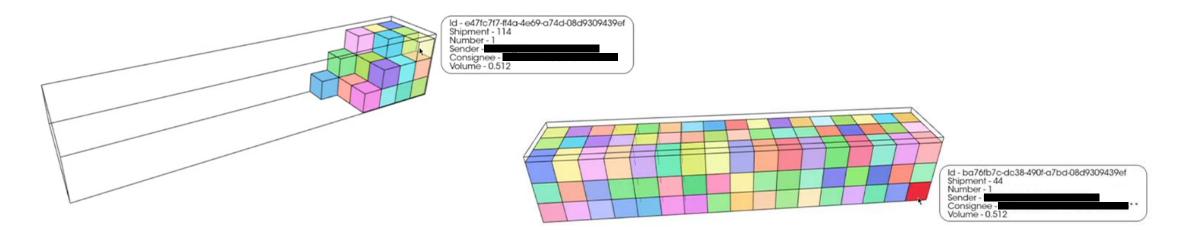
 Occupied Volume
 78.34 cm3

 Occupied Volume
 78.34 cm3

 Taxability
 3060 kg

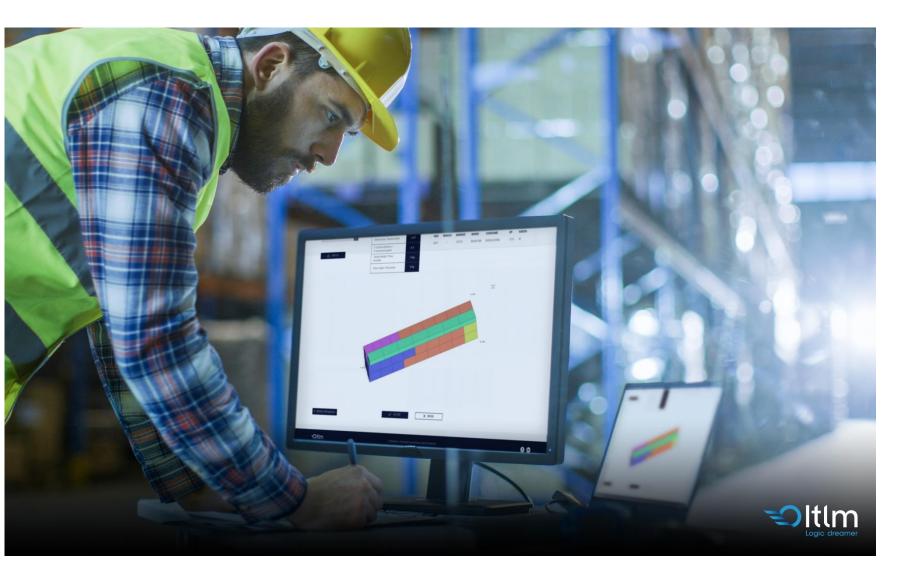
 Barrs Packed
 153 / 181

LIST OF LOADED SHIPMENTS BY ALGORITHM												
Year	Branch	Shipment	Sender	Consignee	ZIP	Nation						
2020	1	1			1002 200	BE						
2020	1	116	INCOLL DOM	810 0 (000 1 H	2020	BE						
2020	1	117	AMONTATIA P	DECEMBER 1	0050	BE						
2020	,	110	200200000000		1064.54	10						


LIST OF NOT LOADED SHIPMENTS BY ALGORITHM

Year	Branch	Shipment	Sender	Consignee	ZIP	Nation
2020	1	6	000000000			BE
2020	1	47	1000			BE
			SRL			
2020	1	48		14.8		BE

:3


The Optimization Software

-	ø	29/153	н	H

N. Items	1.000	Length	Width	Height	Weight	Volume	Stackable	Unloading Order	Priority	Taxability	Loaded	Loading Rules	Country Rules	Customer Partner Rules	Sender Rules	Consignee Rules	Goods	Traffic Line	Year	Branch	Shipment
1	PLT	80	80	80	20	0.512		0	0	20							Merce varia	B01	2020	1	1
1	PLT	80	80	80	20	0.512		0	0	20							Merce varia	B01	2020	1	2
1	PLT	80	80	80	20	0.512		0	0	20							Merce varia	B01	2020	1	3
1	PLT	80	80	80	20	0.512		0	0	20							ARTICOLI PER LA CASA	B01	2020	1	4
1	PLT	80	80	80	20	0.512		0	0	20							ARTICOLI PER LA	B01	2020	1	5

Acceptance by Warehouse Personnel

 Provide a few (nondominated) solutions to choose from

 Combine human experience with the power of optimization

Impact on Practice

Revenue

- Higher average cargo value per shipment
- Reduced fleet size to transport the same amount of cargo (10-15 trucks each day)
- Yearly cost reduction estimated at 1 mln. EUR

Safety

- Load is more evenly distributed across axles and more stable
- Reduce boxes' movements and damage
- Prevents fines due to irregular loadings

Efficiency

- Reduce repositioning of cargo, as opposed to manual approach
- Lower average loading time per unit volume
- Combine experience with optimization

Environment

- Reduce number of daily vehicles, hence fuel consumption
- Yearly CO₂ emission reduction estimated at 1 thousand metric tons

Conclusion

2

 We developed OR techniques for optimizing cargo loading operations at Italmondo, increasing revenues, efficiency, safety, and reducing impact on environment

- Started an "**OR culture**" at the company, that understood:
 - The potential of OR in modern logistics
 - How to identify problems that can be tackled using OR

New optimization-based projects being planned (loading, revenue management, inventory...)

Thank you

Current version of the paper available at: <u>https://ssrn.com/abstract=3294724</u>

